• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« 2nd Call for full Journal and Workshop Papers on VGI_Analytics (AGILE2017) Deadline March 15
Invitation: Colloquium Talk by Prof. Shunichi Koshimura on Earth Observation in Tsunami Disaster Response and Management »

DeepVGI: Deep Learning with Volunteered Geographic Information

Jan 26th, 2017 by GIScienceHD

Deep learning techniques, esp. Convolutional Neural Networks (CNNs), are now widely studied for predictive analytics with remote sensing images, which can be further applied in different domains for ground object detection, population mapping, etc. These methods usually train predicting models with the supervision of a large set of training examples. However, finding ground truths especially for developing and rural areas is quite hard and manually labeling a large set of training data is costly. On the other hand Volunteered Geographic Information (VGI) (e.g., OpenStreetMap (OSM) and MapSwipe) which is the geographic data provided voluntarily by individuals, provides a free approach for such big data.

In our project “DeepVGI”, we study predictive analytics methods with remote sensing images, VGI, deep neural networks as well as other learning algorithms. It aims at deeply learning from satellite imageries with the supervision of such Volunteered Geographic Information.

VGI data from OpenStreetMap (OSM) and the mobile crowdsourcing application MapSwipe which allows volunteers to label images with buildings or roads for humanitarian aids are utilized. We develop an active learning framework with deep neural networks by incorporating both VGI data with more complete supervision knowledge. Our experiments show that DeepVGI can achieve high building detection performance for humanitarian mapping in rural African areas.

Figure 1 shows some initial results of DeepVGI, where OpenStreetMap and MapSwipe data are utilized for training together with multi-layer artificial neural networks and a VGI-based active learning strategy proposed by us. DeepVGI outperforms Deep-OSM (i.e. deep models trained with only OpenStreetMap data), and achieves close accuracy to the volunteers.

deepVGI first results

Figure 1: Initial Results of DeepVGI

On the other hand, such predictive analytics methods will be applied in geographic applications like humanitarian mapping. It can help improve VGI data quality, save volunteers’ time, etc. DeepVGI is also an attempt to explore the interaction between human beings and machines, between crowdsourcing and deep learning. Figure 2 shows the research framework of DeepVGI project, where we will first focus on learning and prediction between deep neural networks and big spatial data (including VGI data from our history OSM project).

deepvgi framework

Figure 2 shows the overal Research Framework of DeepVGI

Further details will be made available soon. DeepVGI is a project of the HeiGIT Big Spatial Data Analytics in cooperation with the Humanitarian VGI group at HeiGIT. The Heidelberg Institute for Geoinformation Technology (HeiGIT) is currently being established with core funding by the Klaus Tschira Stiftung (KTS) Heidelberg.

Tags: deepLearning, humanitarian, MapSwipe, neural network, OSM, VGI

Posted in OSM, VGI Group

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,679 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • High Resolution Data Insights from OpenStreetMap Element Vectorisation
    • Data publication: Point clouds of snow-on and snow-off forest site
    • Job Offer: Deep Learning Engineer (m/f/d, up to 100%)
    • GIScience Postdoc/Senior Researcher Opportunity for OpenStreetMap Road Quality Analysis
    • Assessing road criticality and loss of healthcare accessibility during floods: the case of Cyclone Idai, Mozambique 2019
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Conference crisis mapping Crowdsourcing data quality deep learning disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian humanitarian mapping Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar machine-learning Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics Public Health Quality quality analysis remote sensing routing social media spatial analysis Teaching VGI Workshop
  • Archives

    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    January 2017
    M T W T F S S
    « Dec   Feb »
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031  
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes